Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure

Top Cited Papers
Open Access
Abstract
Graphene, Gapped and Butterflied: The remarkable transport properties of graphene, such as the high electron mobility, make it a promising material for electronics. However, unlike semiconductors such as silicon, graphene's electronic structure lacks a band gap, and a transistor made out of graphene would not have an “off” state. Hunt et al. (p. 1427 , published online 16 May; see the Perspective by Fuhrer ) modulated the electronic properties of graphene by building a heterostructure consisting of a graphene flake resting on hexagonal boron nitride (hBN), which has the same honeycomb structure as graphene, but consists of alternating boron and nitrogen atoms instead of carbons. The natural mismatch between the graphene and hBN lattices led to a moire pattern with a large wavelength, causing the opening of a band gap, the formation of an elusive fractional quantum Hall state, and, at high magnetic fields, a fractal phenomenon in the electronic structure called the Hofstadter butterfly.