Multistimuli‐Responsive Supramolecular Assembly of Cucurbituril/Cyclodextrin Pairs with an Azobenzene‐Containing Bispyridinium Guest

Abstract
A linear supramolecular architecture was successfully constructed by the inclusion complexation of α-cyclodextrin with azobenzene and the host-stabilized charge-transfer interaction of naphthalene and a bispyridinium guest with cucurbit[8]uril in water, which was comprehensively characterized by 1H NMR spectroscopy, UV/Vis absorption, fluorescence, circular dichroism spectroscopy, dynamic laser scattering, and microscopic observations. Significantly, because it benefits from the photoinduced isomerization of the azophenyl group and the chemical reduction of bispyridinium moiety with noncovalent connections, the assembly/disassembly process of this supramolecular nanostructure can be efficiently modulated by external stimuli, including temperature, UV and visible-light irradiation, and chemical redox.