Abstract
The extracellular fluid of the plant pathogen, Fusarium solani f. pisi, grown on the plant cuticular polymer, cutin, was shown to contain cutinase and p-nitrophenyl palmitate hydrolase activities (R.E. Purdy and P.E. Kolattukudy (1973), Arch. Biochem. Biophys. 159, 61). From this extracellular fluid two isozymes of cutinase and a nonspecific esterase (p-nitrophenyl palmitate hydrolase) were isolated using Sephedex G-100 gel filtration, QAE-Sephadex chromatography, and SE-Sephedex chromatography. Phenolics contained in the extracellular fluid were found to be associated with the cutinase but not with the nonspecific esterase, and the phenolic materials were removed from cutinase at the QAE-Sephedex step. A 34-fold purification of the nonspecific esterase and a 6.5-fold purification of cutinase were achieved by the procedure described. The two isozymes of cutinase (I and II) and the nonspecific esterase were homogeneous as judged by polyacrylamide disc gel electrophoresis and sedimentation equilibrium centrifugation. Molecular weights of cutinase I, cutinase II, and the nonspecific esterase were determined by Sephedex G-100 gel filtration, sedimentation equilibrium centrifugation, amino acid composition, and sodium dodecyl sulfate polyacrylamide disc gel electrophoresis. The values obtained with these techniques agreed with each other and were about 22,000 for both cutinases and 52,000 for the nonspecific esterase. The dodecyl sulfate gel electrophoresis indicated that a small portion of cutinase II contained proteolylic clips, near the middle of the polypeptide chain, and that the nonspecific esterase might also have undergone some proteolylic modification. The amino acid composition of cutinase I was similar to that of cutinase II except for the presence of a larger number of tryptophan residues in the latter, while the amino acid composition of the nonspecific esterase showed more differences from that of either cutinase.