piggyBac transposase tools for genome engineering

Abstract
The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc+Int) transposase. Our findings also suggest the position of a target DNA–transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc+Int transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc+Int transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase–target DNA interaction. Significance DNA transposons that translocate by excision from a donor site and insertion into a target site are often used for genome engineering by insertional mutagenesis and transgenesis. The piggyBac element is especially useful because it can excise precisely from an insertion site, restoring the site to its pretransposon state. Precise excision is particularly useful when transient transgenesis is needed, for example, in the transient introduction of transcription factors for induced pluripotent stem cell production. We have used mutagenesis to generate an Excision+ Integration transposase that allows piggyBac excision without potentially harmful reintegration. These mutations likely lie in a target DNA-binding domain.