Synthesis and Study of the Effect of Ba2+ Cations Substitution with Sr2+ Cations on Structural and Optical Properties of Ba2−xSrxZnWO6 Double Perovskite Oxides (x = 0.00, 0.25, 0.50, 0.75, 1.00)

Abstract
The effect of Sr2+ substitution on the morphology, crystal structure, and optical properties of double perovskite oxide Ba2−xSrxZnWO6 (x = 0.00, 0.25, 0.50, 0.75, 1.00) were investigated. Scanning electronic microscopy demonstrated that all samples have similar microstructure morphology but differ in the range of grain sizes. X-ray diffraction measurements indicated that these materials crystallize in a (Fm-3m) cubic crystal structure, and also confirmed the tolerance factor. Rietveld analysis revealed that the lattice parameter decreased from 8.11834 to 8.039361 Å when the substitution of Ba2+ with Sr2+ cations increased from zero to 100%. Fourier transform infrared (FTIR) and Raman spectroscopies displayed a symmetric stretching vibration of WO6 octahedra at 825 cm−1, and an anti-symmetric stretching mode of WO6 was observed by FTIR at 620 cm−1. A strong peak at 420 cm−1 was also observed in the Raman spectra and is due to the W–O–W bending vibration modes. UV-Vis diffuse reflectance spectroscopy was carried out for the series, and the band gap energy decreased from 3.27 eV for Ba2ZnWO6 to 3.02 and 3.06 eV for Ba1.75Sr0.25ZnWO6 and Ba1.5Sr0.5ZnWO6, respectively. The excitation and emission photoluminescence properties were investigated at room temperature.