Cardioprotective effects of acute and chronic opioid treatment are mediated via different signaling pathways

Abstract
A 5-day exposure to morphine exerts a profound cardioprotective phenotype in murine hearts. In the present study, we examined mechanisms by which morphine generates this effect, exploring the roles of Gi and Gs proteins, PKA, PKC, and β-adrenergic receptors (β-AR) in acute and chronic opioid preconditioning. Langendorff-perfused hearts from placebo, acute morphine (AM; 10 μmol/l)-, or chronic morphine (CM)-treated mice (75-mg pellet, 5 days) underwent 25-min ischemia and 45-min reperfusion. After reperfusion, placebo-treated hearts exhibited marked contractile and diastolic dysfunction [rate-pressure product (RPP), 40 ± 4% baseline; end-diastolic pressure (EDP), 33 ± 3 mmHg], whereas AM hearts showed significant improvement in recovery of RPP and EDP (60 ± 3% and 23 ± 4 mmHg, respectively; P < 0.05 vs. placebo). Furthermore, CM hearts demonstrated a complete return of diastolic function and significantly greater recovery of contractile function (83 ± 3%, P < 0.05 vs. both placebo and AM). Pretreatment with Gi protein inhibitor pertussis toxin abolished AM protection while partially attenuating CM recovery ( P < 0.05 vs. placebo). Treatment with Gs inhibitor NF-449 did not affect AM preconditioning yet completely abrogated CM preconditioning. Similarly, PKA inhibition significantly attenuated the ischemia-tolerant state afforded by CM, whereas it was ineffective in AM hearts. PKC inhibition with chelerythrine was ineffective in CM hearts while completely abrogating AM preconditioning. Moreover, whereas β1-AR blockade with CGP-20712A failed to alter recovery in CM hearts, the β2-AR antagonist ICI-118,551 significantly attenuated postischemic recovery. These data describe novel findings whereby CM preconditioning is mediated by a PKC-independent pathway involving PKA, β2-AR, and Gs proteins, whereas AM preconditioning is mediated via Gi proteins and PKC.