Abstract
Large-scale structures in the form of instability waves are an inherent part of a shearlayer mixing process. Such structures are shown to be present in an acoustically and aerodynamically well behaved jet even at high Mach numbers. They do not directly radiate significant acoustic power in a subsonic jet, but do govern the production of the turbulent fluctuations which radiate broad-band jet noise. Over the whole subsonic Mach number range, a significant increase in jet noise can be produced by exciting the shear layer with a fluctuating pressure at the nozzle of only 0·08 % of the jet dynamic head but with the correct Strouhal number. Such excitation by internal acoustic, aerodynamic or thermal fluctuations could explain the variability of jet noise measurements between different rigs and could also be responsible for some components of ‘excess’ noise.