Abstract
Both genetic and environmental factors underlie phenotypic variation. While research at the interface of evolutionary and developmental biology has made excellent advances in understanding the contribution of genes to morphology, less well understood is the manner in which environmental cues are incorporated during development to influence the phenotype. Also virtually unexplored is how evolutionary transitions between environmental and genetic control of trait variation are achieved. Here, I review investigations into molecular mechanisms underlying phenotypic plasticity in the aphid wing dimorphism system. Among aphids, some species alternate between environmentally sensitive (polyphenic) and genetic (polymorphic) control of wing morph determination in their life cycle. Therefore, a traditional molecular genetic approach into understanding the genetically controlled polymorphism may provide a unique avenue into not only understanding the molecular basis of polyphenic variation in this group, but also the opportunity to compare and contrast the mechanistic basis of environmental and genetic control of similar dimorphisms.