Abstract
Acute altitude illnesses include acute mountain sickness (AMS), a benign condition involving headache, nausea, vomiting, irritability, insomnia, dizziness, lethargy, and peripheral edema, and potentially lethal high-altitude cerebral edema and pulmonary edema (HAPE). Recent evidence is summarized that AMS is related to cerebral edema secondary at least in part to hypoxic cerebral vasodilation and elevated cerebral capillary hydrostatic pressure. This results in reduced brain compliance with compression of intracranial structures in the absence of altered global brain metabolism. It is postulated that these primary intracranial events elevate peripheral sympathetic activity that acts neurogenically in the lung possibly in concert with pulmonary capillary stress failure to cause HAPE and in the kidney to promote salt and water retention. The adrenergic responses are likely modulated by striking increases of aldosterone, vasopressin and atrial natriuretic peptide. The effects of exercise on altitude-induced illness and various therapeutic regimens (acetazolamide, CO2 breathing, dexamethasone, and alpha adrenergic inhibitors) are discussed in light of this hypothesis.