Abstract
W. Ross Ashby was a founder of both cybernetics and general systems theory. His systems theory outlined the operational structure of models and observers, while his cybernetics outlined the functional architecture of adaptive systems. His homeostat demonstrated how an adaptive control system, equipped with a sufficiently complex repertoire of possible alternative structures, could maintain stability in the face of highly varied and challenging environmental perturbations. The device illustrates his ‘law of requisite variety’, i.e. that a controller needs at least as many internal states as those in the system being controlled. The homeostat provided an early example of how an adaptive control system might be ill-defined vis-à-vis its designer, nevertheless solve complex problems. Ashby ran into insurmountable difficulties when he attempted to scale up the homeostat, and consequently never achieved the general purpose, brainlike devices that he had initially sought. Nonetheless, the homeostat continues to offer useful insights as to how the large analogue, adaptive networks in biological brains might achieve stability.

This publication has 20 references indexed in Scilit: