De novo fatty acid synthesis mediated by acyl‐carrier protein in Neurospora crassa mitochondria

Abstract
The acyl-carrier protein (ACP) in Neurospora crassa mitochondria [Brody, S. & Mikolajczyk, S. (1988) Eur. J. Biochem. 173, 353-359] mediated a cerulenin-sensitive, de novo fatty acid synthesis independent of the fatty acid synthetase complex present in the cytoplasm. Incubation of mitochondria with [2-14C]malonate labeled only the ACP as indicated by autoradiography after SDS/PAGE. Under these in vitro conditions ATP was required for the initial acyl-ACP formation, but further elongation required either magnesium or the direct addition of NADPH. Labeled hexanoic (6:0) and caprylic (8:0) acids were detected as intermediates in the pathway, as well as hydroxymyristic acid. All of the intermediates, and the eventual product of the reaction, myristic acid (14:0), were released from the ACP by alkaline treatment. Pulse-chase experiments demonstrated the incorporation on to, and release of label from, the ACP. In vivo labeling of ACP with [2-14C]malonate was also detected and the label was in the form of hydroxymyristic acid. This newly discovered pathway is discussed from the standpoint of its possible role in providing acyl chains for mitochondrial lipids.