Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags

Top Cited Papers
Open Access
Abstract
Next-generation sequencing technology provides novel opportunities for gathering genome-scale sequence data in natural populations, laying the empirical foundation for the evolving field of population genomics. Here we conducted a genome scan of nucleotide diversity and differentiation in natural populations of threespine stickleback (Gasterosteus aculeatus). We used Illumina-sequenced RAD tags to identify and type over 45,000 single nucleotide polymorphisms (SNPs) in each of 100 individuals from two oceanic and three freshwater populations. Overall estimates of genetic diversity and differentiation among populations confirm the biogeographic hypothesis that large panmictic oceanic populations have repeatedly given rise to phenotypically divergent freshwater populations. Genomic regions exhibiting signatures of both balancing and divergent selection were remarkably consistent across multiple, independently derived populations, indicating that replicate parallel phenotypic evolution in stickleback may be occurring through extensive, parallel genetic evolution at a genome-wide scale. Some of these genomic regions co-localize with previously identified QTL for stickleback phenotypic variation identified using laboratory mapping crosses. In addition, we have identified several novel regions showing parallel differentiation across independent populations. Annotation of these regions revealed numerous genes that are candidates for stickleback phenotypic evolution and will form the basis of future genetic analyses in this and other organisms. This study represents the first high-density SNP–based genome scan of genetic diversity and differentiation for populations of threespine stickleback in the wild. These data illustrate the complementary nature of laboratory crosses and population genomic scans by confirming the adaptive significance of previously identified genomic regions, elucidating the particular evolutionary and demographic history of such regions in natural populations, and identifying new genomic regions and candidate genes of evolutionary significance. Oceanic threespine stickleback have invaded and adapted to freshwater habitats countless times across the northern hemisphere. These freshwater populations have often evolved in similar ways from the ancestral marine stock from which they independently derived. With the exception of a few identified genes, the genetic basis of this remarkable parallel adaptation is unclear. Here we show that the parallel phenotypic evolution is matched by parallel patterns of nucleotide diversity and population differentiation across the genome. We used a novel high-throughput sequence-based genotyping approach to produce the first high density genome-wide scans of threespine stickleback populations and identified several genomic regions indicative of both divergent and balancing selection. Some of these regions have been associated previously with traits important for freshwater adaptation, but others were previously unidentified. Within these genomic regions we identified candidate genes, laying the foundation for further genetic and functional study of key pathways. This research illustrates the complementary nature of laboratory mapping, functional genetics, and population genomics.