Computational model for the formation of uniform silver spheres by aggregation of nanosize precursors

Abstract
We present results of computational modeling of the formation of uniform spherical silver particles prepared by rapid mixing of ascorbic acid and silver-amine complex solutions in the absence of a dispersing agent. Using an accelerated integration scheme to speed up the calculation of particle size distributions in the latter stages, we find that the recently reported experimental results—some of which are summarized here—can be modeled effectively by the two-stage formation mechanism used previously to model the preparation of uniform gold spheres. We treat both the equilibrium concentration of silver atoms and the surface tension of silver precursor nanocrystals as free parameters, and find that the experimental reaction time scale is fit by a narrow region of this two-parameter space. The kinetic parameter required to quantitatively match the final particle size is found to be very close to that used previously in modeling the formation of gold particles, suggesting that similar kinetics governs the aggregation process and providing evidence that the two-stage model of burst nucleation of nanocrystalline precursors followed by their aggregation to form the final colloids can be applied to systems both with and without dispersing agents. The model also reproduced semiquantitatively the effects of solvent viscosity and temperature on the particle preparation.

This publication has 29 references indexed in Scilit: