Synthesis and applications of electrochemically self-assembled titania nanotube arrays

Abstract
Highly ordered vertically oriented TiO2 nanotube arrays fabricated by electrochemical anodization offer a large surface area architecture with precisely controllable nanoscale features. These nanotubes have shown remarkable properties in a variety of applications including, for example, their use as hydrogen sensors, in the photoelectrochemical generation of hydrogen, dye-sensitized and solid-state heterojunction solar cells, photocatalytic reduction of carbon dioxide into hydrocarbons, and as a novel drug delivery platform. Herein we consider the development of the various nanotube array synthesis techniques, different applications of the TiO2 nanotube arrays, unresolved issues, and possible future research directions.