One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage

Abstract
One dimensional MnO2/titanium nitride nanotube coaxial arrays have been designed for a high performance electrochemical capacitive energy storage system based on the concept of fabricating an efficient, fast charge separation network. This nanostructured composite material was prepared by electrodepositing mesoporous MnO2 into TiN nanotube arrays (TiN NTA), which are prepared by anodization of a Ti foil substrate and subsequent nitridation using ammonia annealing. The electrodeposited mesoporous MnO2 inside the electrically conductive framework of a TiN nanotube has been found to show high specific capacitance (681.0 F g−1 at 2 A g−1), excellent rate capability (55% capacitance retention from 2 to 2000 mV s−1), and a long cycle life (3% capacitance loss after 1000 cycles). These results demonstrate that this coaxial composite nanostructure is very promising for high performance supercapacitors.