A Mycobacterium Strain with Extended Capacities for Degradation of Gasoline Hydrocarbons

Abstract
A bacterial strain (strain IFP 2173) was selected from a gasoline-polluted aquifer on the basis of its capacity to use 2,2,4-trimethylpentane (isooctane) as a sole carbon and energy source. This isolate, the first isolate with this capacity to be characterized, was identified by 16S ribosomal DNA analysis, and 100% sequence identity with a reference strain of Mycobacterium austroafricanum was found. Mycobacterium sp. strain IFP 2173 used an unusually wide spectrum of hydrocarbons as growth substrates, including n -alkanes and multimethyl-substituted isoalkanes with chains ranging from 5 to 16 carbon atoms long, as well as substituted monoaromatic hydrocarbons. It also attacked ethers, such as methyl t -butyl ether. During growth on gasoline, it degraded 86% of the substrate. Our results indicated that strain IFP 2173 was capable of degrading 3-methyl groups, possibly by a carboxylation and deacetylation mechanism. Evidence that it attacked the quaternary carbon atom structure by an as-yet-undefined mechanism during growth on 2,2,4-trimethylpentane and 2,2-dimethylpentane was also obtained.