The mechanism of fucoidan-induced apoptosis in leukemic cells: Involvement of ERK1/2, JNK, glutathione, and nitric oxide

Abstract
Fucoidan, a sulfated polysaccharide in brown seaweed, has various biological activities including anti-tumor activity. We investigated the effects of fucoidan on the apoptosis of human promyeloid leukemic cells and fucoidan-mediated signaling pathways. Fucoidan induced apoptosis of HL-60, NB4, and THP-1 cells, but not K562 cells. Fucoidan treatment of HL-60 cells induced activation of caspases-8, -9, and -3, the cleavage of Bid, and changed mitochondrial membrane permeability. Fucoidan-induced apoptosis, cleavage of procaspases, and changes in the mitochondrial membrane permeability were efficiently blocked by depletion of mitogen-activated protein kinase (MAPK) kinase kinase 1 (MEKK1), and inhibitors of MAPK kinase 1 (MEK1) and c Jun NH2-terminal kinase (JNK). The phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and JNK was increased in fucoidan-treated HL-60, NB4, and THP-1 cells, but not K562 cells. ERK1/2 activation occurred at earlier times than JNK activation and JNK activation was blocked by MEK1 inhibitor. In addition, fucoidan-induced apoptosis was inhibited by addition of glutathione and/or L-NAME, and fucoidan decreased intracellular glutathione concentrations and stimulated nitric oxide (NO) production. Buthionine-[R,S]-sulfoximine rendered HL-60 cells more sensitive to fucoidan. Depletion of MEKK1 and inhibition of MEK1 restored the intracellular glutathione content and abrogated NO production, whereas inhibition of JNK activation by SP600125 restored intracellular glutathione content but failed to inhibit NO production in fucoidan-treated HL-60 cells. These results suggest that activation of MEKK1, MEK1, ERK1/2, and JNK, depletion of glutathione, and production of NO are important mediators in fucoidan-induced apoptosis of human leukemic cells.