Thermally Induced Changes in Amphiphilicity Drive Reversible Restructuring of Assemblies of ABC Triblock Copolymers with Statistical Polyether Blocks

Abstract
ABC triblock copolymers in which a block with stimulus-dependent solvophilicity resides between solvophilic and solvophobic end blocks can undergo reversible transitions between different thermodynamically stable assemblies in the presence or absence of stimulus. As a new example of such a copolymer system, thermoresponsive poly(ethylene oxide)-b-poly(ethylene oxide-stat-butylene oxide)-b-poly(isoprene) (E−BE−I) triblock copolymers with narrow molecular weight distributions (Mw/Mn: 1.05−1.18) were prepared by sequential living anionic and nitroxide-mediated radical polymerizations. The specific copolymers examined (9.0 ≤ Mn ≤ 14.4 kg/mol, 14% ≤ wt % isoprene ≤35%) form near-spherical aggregates with narrow size distributions at 25 °C. The thermoresponsive behavior of these polymers was studied by applying cloud point, DLS, and TEM measurements to a representative polymer, E2.3BE5.3I2.3. The transformation of polymer aggregates from spherical micelles to vesicles (polymersomes) at elevated temperatures was detected by DLS and TEM studies, both with and without cross-linking of polymer assemblies. The rate of transformation with E−BE−I systems is more rapid than that observed for poly(ethylene oxide)-b-poly(N-isopropylacrylamide)-b-poly(isoprene) assemblies, suggesting that interchain hydrogen bonding of responsive blocks after dehydration plays an important role in the kinetics of aggregate rearrangement.

This publication has 87 references indexed in Scilit: