Matched filter identification of left-ventricular endocardial borders in transesophageal echocardiograms

Abstract
The use of one-dimensional spatial matched filtering for identifying the left ventricular endocardial borders in human transesophageal echocardiograms recorded during surgery is investigated. A maximum-likelihood method was used to choose the endocardial intensity profiles centered within the ventricle. The computer-generated border points were compared to those identified by an experienced ultrasonographer. A 16-pixel step template located 63.2% of the border points within 2 mm of the manual border. Median prefiltering of the images reduced detection accuracy by 3% to 6%. No statistically significant difference in accuracy was found between longer and shorter templates or between data-derived and step templates. Compared to manual estimates, computer generated cross-sectional area determinations were correlated with a coefficient of 0.93. Matched filtering executes rapidly, does not require prefiltering, and performs as well as other reported methods in estimating ventricular area.