Loss of heterozygosity preferentially occurs in early replicating regions in cancer genomes

Abstract
Erroneous repair of DNA double-strand breaks by homologous recombination (HR) leads to loss of heterozygosity (LOH). Analysing 22 392 and 74 415 LOH events in 363 glioblastoma and 513 ovarian cancer samples, respectively, and using three different metrics, we report that LOH selectively occurs in early replicating regions; this pattern differs from the trends for point mutations and somatic deletions, which are biased toward late replicating regions. Our results are independent of BRCA1 and BRCA2 mutation status. The LOH events are significantly clustered near RNA polII-bound transcription start sites, consistent with the reports that slow replication near paused RNA polII might initiate HR-mediated repair. The frequency of LOH events is higher in the chromosomes with shorter inter-homolog distance inside the nucleus. We propose that during early replication, HR-mediated rescue of replication near paused RNA polII using homologous chromosomes as template leads to LOH. The difference in the preference for replication timing between different classes of genomic alterations in cancer genomes also provokes a testable hypothesis that replicating cells show changing preference between various DNA repair pathways, which have different levels of efficiency and fidelity, as the replication progresses.