Blocking temperature distribution and long-term stability of spin-valve structures with Mn-based antiferromagnets

Abstract
We have determined the blocking temperature distribution T b (T) in spin-valve sheet films with FeMn, IrMn, PtMn, NiMn and CrPdMn antiferromagnetic layers (AFM). We find a clear dependence of T b (T) on the field applied during the measurement, which we link to the reversal state of the pinned layer through the torque applied on the AFM. Using fields large enough to fully reverse the pinned layer, NiMn and PtMn show little or no components of the blocking temperature below 150 °C, whereas both IrMn and CrPdMn (the latter in a “synthetic” AFM design) exhibit important low-temperature trailing edges of the distribution. Accelerated annealing experiments in a low reversed field equivalent to the self-demagnetizing field in a micron-size head allows us to access the time to failure and the failure activation energy from which the expected lifetime can be assessed. We find a general correlation between the expected lifetime and the fraction of loose (e.g., unblocked) AFM spins at any given temperature. Accordingly, only NiMn and PtMn are found to exhibit a sufficient long-term stability for disk-drive operations.