Hyperfine interaction and magnetoresistance in organic semiconductors

Abstract
We explore the possibility that hyperfine interaction causes the recently discovered organic magnetoresistance (OMAR) effect. We deduce a simple fitting formula from the hyperfine Hamiltonian that relates the saturation field of the OMAR traces to the hyperfine coupling constant. We compare the fitting results to literature values for this parameter. Furthermore, we apply an excitonic pair mechanism model based on hyperfine interaction, previously suggested by others to explain various magnetic-field effects in organics, to the OMAR data. Whereas this model can explain a few key aspects of the experimental data, we uncover several fundamental contradictions as well. By varying the injection efficiency for minority carriers in the devices, we show experimentally that OMAR is only weakly dependent on the ratio between excitons formed and carriers injected, likely excluding any excitonic effect as the origin of OMAR.