Abstract
The structured tensor-product approximation of multidimensional nonlocal operators by a two-level rank-(r1, . . . , rd) decomposition of related higher-order tensors is proposed and analysed. In this approach, the construction of the desired approximant to a target tensor is a reminiscence of the Tucker-type model, where the canonical components are represented in a fixed (uniform) basis, while the core tensor is given in the canonical format. As an alternative, the multilevel nested canonical decomposition is presented. The complexity analysis of the corresponding multilinear algebra shows an almost linear cost in the one-dimensional problem size. The existence of a low Kronecker rank two-level representation is proven for a class of function-related tensors.