Bacterial Diversity Dynamics Associated with Different Diets and Different Primer Pairs in the Rumen of Kankrej Cattle

Abstract
The ruminal microbiome in herbivores plays a dominant role in the digestion of lignocellulose and has potential to improve animal productivity. Kankrej cattle, a popular native breed of the Indian subcontinent, were used to investigate the effect of different dietary treatments on the bacterial diversity in ruminal fractions using different primer pairs. Two groups of four cows were assigned to two primary diets of either dry or green forages. Each group was fed one of three dietary treatments for six weeks each. Dietary treatments were; K1 (50% dry/green roughage: 50% concentrate), K2 (75% dry/green roughage: 25% concentrate) and K3 (100% dry/green roughage). Rumen samples were collected using stomach tube at the end of each dietary period and separated into solid and liquid fractions. The DNA was extracted and amplified for V1–V3, V4–V5 and V6–V8 hypervariable regions using P1, P2 and P3 primer pairs, sequenced on a 454 Roche platform and analyzed using QIIME. Community compositions and the abundance of most bacterial lineages were driven by interactions between primer pair, dietary treatment and fraction. The most abundant bacterial phyla identified were Bacteroidetes and Firmicutes however, the abundance of these phyla varied between different primer pairs; in each primer pair the abundance was dependent on the dietary treatment and fraction. The abundance of Bacteroidetes in cattle receiving K1 treatment indicate their diverse functional capabilities in the digestion of both carbohydrate and protein while the predominance of Firmicutes in the K2 and K3 treatments signifies their metabolic role in fibre digestion. It is apparent that both liquid and solid fractions had distinct bacterial community patterns (P<0.001) congruent to changes in the dietary treatments. It can be concluded that the P1 primer pair flanking the V1–V3 hyper-variable region provided greater species richness and diversity of bacterial populations in the rumen of Kankrej cattle.