Single Defect Center Scanning Near-Field Optical Microscopy on Graphene

Abstract
We present a scanning-probe microscope based on an atomic-size emitter, a single nitrogen-vacancy center in a nanodiamond. We employ this tool to quantitatively map the near-field coupling between the NV center and a flake of graphene in three dimensions with nanoscale resolution. Further we demonstrate universal energy transfer distance scaling between a point-like atomic emitter and a two-dimensional acceptor. Our study paves the way toward a versatile single emitter scanning microscope, which could image and excite molecular-scale light fields in photonic nanostructures or single fluorescent molecules.