Design and Experimental Evaluation of a High-Temperature Radial Turbine

Abstract
The report describes the design, fabrication and test of a radial turbine designed to produce 219.6 Btu/lb stage work at 87.5% efficiency, with a 5:1 stage pressure ratio. Turbine inlet gas conditions at design point were 257. 5 psia and 2300F. The resulting turbine configuration consisted of an air- cooled, 12-bladed rotor designed for 67,000 rpm, and a 20-vaned air-cooled nozzle section of a reflex-type (supersonic) design. Both parts were designed as IN100 (PWA 658) investment castings. As part of the preliminary design effort, a fabrication study was conducted to evaluate feasible methods of casting the turbine nozzle and rotor. Results showed that the nozzle section could be cast as an integral assembly, but fabrication of the rotor as an integral casting was much more difficult. Bicasting was evaluated as an alternate method of fabricating the rotor, and results showed substantial advantages for the bicasting technique. However, neither method could produce designed rotor properties, and testing was conducted with structurally limited rotors. A test rig was designed and fabricated by the contractor. The test rig consisted of a supercharged gas generator, which had the capability of controlling the turbine load by varying the compressor flow rate. Burner testing preceded turbine testing.