Motility Powered by Supramolecular Springs and Ratchets

Abstract
Not all biological movements are caused by molecular motors sliding along filaments or tubules. Just as springs and ratchets can store or release energy and rectify motion in physical systems, their analogs can perform similar functions in biological systems. The energy of biological springs is derived from hydrolysis of a nucleotide or the binding of a ligand, whereas biological ratchets are powered by Brownian movements of polymerizing filaments. However, the viscous and fluctuating cellular environment and the mechanochemistry of soft biological systems constrain the modes of motion generated and the mechanisms for energy storage, control, and release.