Control of the differentiation of regulatory T cells and TH17 cells by the DNA-binding inhibitor Id3

Abstract
TGF-β and Foxp3 are required for the development of regulatory T cells. Chen and colleagues show that the helix-loop-helix proteins E2A and Id3 enhance Foxp3 expression and relieve it from inhibition by other transcription factors. The molecular mechanisms that direct transcription of the gene encoding the transcription factor Foxp3 in CD4+ T cells remain ill-defined. We show here that deletion of the DNA-binding inhibitor Id3 resulted in the defective generation of Foxp3+ regulatory T cells (Treg cells). We identify two transforming growth factor-β1 (TGF-β1)-dependent mechanisms that were vital for activation of Foxp3 transcription and were defective in Id3−/− CD4+ T cells. Enhanced binding of the transcription factor E2A to the Foxp3 promoter promoted Foxp3 transcription. Id3 was required for relief of inhibition by the transcription factor GATA-3 at the Foxp3 promoter. Furthermore, Id3−/− T cells showed greater differentiation into the TH17 subset of helper T cells in vitro and in a mouse asthma model. Therefore, a network of factors acts in a TGF-β-dependent manner to control Foxp3 expression and inhibit the development of TH17 cells.