Surface Chemistry and Electrical Properties of Germanium Nanowires

Abstract
Germanium nanowires (GeNWs) with p- and n-dopants were synthesized by chemical vapor deposition (CVD) and were used to construct complementary field-effect transistors (FETs). Electrical transport and X-ray photoelectron spectroscopy (XPS) data are correlated to glean the effects of Ge surface chemistry to the electrical characteristics of GeNWs. Large hysteresis due to water molecules strongly bound to GeO2 on GeNWs is revealed. Different oxidation behavior and hysteresis characteristics and opposite band bending due to Fermi level pinning by interface states between Ge and surface oxides are observed for p- and n-type GeNWs. Vacuum annealing above 400 °C is used to remove surface oxides and eliminate hysteresis in GeNW FETs. High-κ dielectric HfO2 films grown on clean GeNW surfaces by atomic layer deposition (ALD) using an alkylamide precursor is effective in serving as the first layer of surface passivation. Lastly, the depletion length along the radial direction of nanowires is evaluated. The result suggests that surface effects could be dominant over the “bulk” properties of small diameter wires.