Power architecture design with improved system efficiency, EMI and power density

Abstract
The optimized design of power architecture is discussed in this paper. The paper first discusses the asymmetrical interleaved multi-channel PFC technique and its benefits to system power density and the reduction of differential mode noise. A balance technique is then proposed to minimize the common mode noise of asymmetrical interleaved multi-channel PFC. Greatly reduced EMI leads to the size reduction of EMI filters. System power density is therefore improved. For DC/DC stage, a 1 MHz, LLC resonant converter with novel synchronous rectifier is proposed to reduce body diode conduction time. Both conduction loss and reverse recovery loss can be reduced. The whole system's efficiency, EMI and power density can be greatly improved by applying the techniques proposed in this paper.

This publication has 18 references indexed in Scilit: