Bicuculline From Corydalis Species As A Natural Anti-COVID-19 Drug

Abstract
Objective: To perform molecular docking of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 3CL hydrolytic enzyme (3CLpro) and Angiotensin-Converting Enzyme II (ACE2) receptors, and to seek potential natural anti-COVID-19 drugs using computer virtual screening technology. Methods: In this study, the Autodock Vina software was first used to achieve the molecular docking of the targets, namely, sars-cov-2 3CL hydrolase and ACE2. Then, the herbals acting on 3CLpro and ACE2 receptors were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the active ingredients were also selected. After that, the chemical-target network was constructed based on the network pharmacology, and the functional enrichment analysis of Gene Ontology (GO) and the pathway enrichment analysis of Kyoto Gene and Genome Encyclopedia (KEGG) were carried out by DAVID to speculate about the mechanism of action of the core drug. Results: A total of six potential anti-COVID-19 active ingredients were selected from natural herbs. They were evaluated by the “ADME” and "Lipinski” rules and their content in the natural herbs were determined by the literature mining method. Finally, Bicuculline was selected as the anti-covid-19 candidate drug. Conclusion: Bicuculline has a stronger ability to combine with 3CLpro and ACE2 than chemical drugs recommended in the clinical practice. Internet pharmacological analysis confirms that Bicuculline can effectively resist COVID-19 pneumonia through multiple pathways.