Synthesis, characterization, and self-assembly behaviors of a biodegradable and anti-clotting poly(EDTA-diol-co-butylene adipate glycol urethanes)

Abstract
Anti-clotting EDTA-diol was successfully synthesized by an esterification reaction between EDTA-2Na and poly(ethylene glycol). Novel anti-clotting and biodegradable multi-block polyurethanes were then prepared by EDTA-diol and biodegradable poly(1,4-butylene adipate glycol) (PBA) as the soft chain, and 1,4-butanediol (BDO) and hexamethylene diisocyanate (HDI) as the hard chain, respectively. The effect of the EDTA-diol content in the soft chain of the prepared polyurethanes on mechanical properties, thermal stability, hydrophilicity, and anticoagulant ability was largely investigated by tensile tests, thermogravimetric analysis, contact angle and water absorption measurements, and hemolytic measurement. Self-assembly behaviors of the resulting polyurethanes were also evaluated by fluorescence spectroscopy and transmission electron microscopy. The prepared polyurethanes have large potential applications in the fields of biomedical materials such as tissue engineering and drug carriers.

This publication has 34 references indexed in Scilit: