Abstract
This paper describes the ability of the Asian fish nematode Camallanuscotti to carry out both heteroxeny, i.e. an indirect life-cycle using copepods as intermediate host, and monoxeny, i.e. direct infection and development in the definitive fish host. C. cotti occurs naturally in various freshwater teleosts in Asia. During the past decades it has been disseminated into closed or semi-closed aquaculture systems and aquaria around the world, mainly due to the ornamental fish trade. Under such conditions the species may frequently face a bottleneck situation with regard to the availability of copepods. It is known that C. cotti may reproduce and persist in copepod-free aquaria for several months. In order to investigate whether C. cotti has selected towards monoxeny in water systems lacking copepods, in contrast to the opposite selection pressure when copepods are present, 2 separate infection trials were run. It was shown that the parasite can infect the fish host both indirectly via copepods, and directly. However, C. cotti has significantly higher fitness, expressed as survival to maturity, when transmitted indirectly compared to the direct transmission mode. We suggest that the ability of aquarium populations of C. cotti to carry out a direct life-cycle is favoured by selection in order to avoid extinction whenever copepods are absent. It still remains unknown, however, whether the parasite shows the same characteristics in the wild.