A three‐dimensional cinematographical analysis of the volleyball spike

Abstract
The objectives of this study were to describe the volleyball spiking actions used by players in top‐level competition, and also to examine the interrelationships between upper limb, lower limb and whole body kinematic variables, and post‐impact ball speed in the spiking technique. Two Photosonics Biomechanics 500 cine‐cameras operating at a nominal frame rate of 100 Hz were used to film the spiking actions of 10 male senior international volleyball players at the XVI Universiade (1991 World Student Games). Three‐dimensional object space co‐ordinates of digitized image co‐ordinates were obtained using a DLT algorithm and an array of calibration points in the filmed volume. Relationships between lower limb angular kinematics at take‐off, centre of mass vertical velocity at take‐off and centre of mass vertical displacement (jump height) were examined. Relationships between angular kinematics of the hitting arm and post‐impact ball speed were also determined. The mean (± S.E.) centre of mass vertical velocity at take‐off was 3.59 ± 0.05 m s‐1 and the mean height jumped was 0.62 ± 0.02 m. As expected, a significant correlation was found between the square of the centre of mass vertical velocity at take‐off and jump height (r = 0.78; P 1, and this was significantly correlated to maximum right humerus angular velocity (r=0.75; P< 0.01). Trunk rotation angular kinematics and right elbow angular velocity did not correlate significantly with post‐impact ball speed. It was also noted that the majority of players filmed did not fit into any of the spiking categories identified in earlier studies.

This publication has 2 references indexed in Scilit: