Feruloylation in Grasses: Current and Future Perspectives

Abstract
In the cell walls of forage grasses, ferulic acid is esterified to arabinoxylans and participates with lignin monomers in oxidative coupling pathways to generate ferulate-polysaccharide-lignin complexes that cross-link the cell wall. The accumulation of ferulates and the cross-linking of arabinoxylans via diferulate esters are hypothesized to function in various processes in plants. The specific roles of arabinoxylan feruloylation as well as the nature, cellular localization, and substrate for arabinoxylans feruloylation of cell walls are reviewed. The various approaches that have been used for assessing the specific roles of feruloylation are described and assessed. I argue that, until recently, the specific role of feruloylation in these various processes has been established largely by indirect experiments and, although these studies reached similar conclusions about the potential importance of wall feruloylation, they suffer from a common problem: namely they depend on correlations between two processes and do not stem from a detailed understanding of the mechanisms of feruloylation. I also argue that the nature of arabinoxylan feruloylation remains uncertain.