ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization

Abstract
Dynamic changes in protein S-palmitoylation are critical for regulating protein localization and signalling. Only two enzymes - the acyl-protein thioesterases APT1 and APT2 - are known to catalyze palmitate removal from cytosolic cysteine residues. It is unclear if these enzymes act constitutively on all palmitoylated proteins, or if additional depalmitoylases exist. Using a dual pulse-chase strategy comparing palmitate and protein half-lives, we found knockdown or inhibition of APT1 and APT2 blocked depalmitoylation of Huntingtin, but did not affect palmitate turnover on postsynaptic density protein 95 (PSD95) or N-Ras. We used activity profiling to identify novel serine hydrolase targets of the APT1/2 inhibitor Palmostatin B, and discovered that a family of uncharacterised ABHD17 proteins can accelerate palmitate turnover on PSD95 and N-Ras. ABHD17 catalytic activity is required for N-Ras depalmitoylation and re-localization to internal cellular membranes. Our findings indicate the family of depalmitoylation enzymes may be substantially broader than previously believed.
Funding Information
  • Canadian Institutes of Health Research (Institute of Genetics Team Grant, GPG-202165)
  • Canada Foundation for Innovation (Leading Edge Fund, 30636)
  • University of British Columbia (Four Year Fellowship (FYF))
  • Canadian Institutes of Health Research (New Investigator Salary Award)