A convolution method of calculating dose for 15‐MV x rays

Abstract
Arrays were generated using the Monte Carlo method representing the energy absorbed throughout waterlike phantoms from charged particles and scatter radiation set in motion by primary interactions at one location. The resulting "dose spread arrays" were normalized to the collision fraction of the kinetic energy released by the primary photons. These arrays are convolved with the relative primary fluence interacting in a phantom to obtain three-dimensional dose distributions. The method gives good agreement for the 15-MV x-ray dose in electronic disequilibrium situations, such as the buildup region, near beam boundaries, and near low-density heterogeneities.