A KATP Channel-Dependent Pathway within α Cells Regulates Glucagon Release from Both Rodent and Human Islets of Langerhans

Abstract
Glucagon, secreted from pancreatic islet α cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring β cells, or to an intrinsic glucose sensing by the α cells themselves. We examined hormone secretion and Ca2+ responses of α and β cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn2+ signalling was blocked, but was reversed by low concentrations (1–20 μM) of the ATP-sensitive K+ (KATP) channel opener diazoxide, which had no effect on insulin release or β cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 μM). Higher diazoxide concentrations (≥30 μM) decreased glucagon and insulin secretion, and α- and β-cell Ca2+ responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (10 μM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na+ (TTX) and N-type Ca2+ channels (ω-conotoxin), but not L-type Ca2+ channels (nifedipine), prevented glucagon secretion. Both the N-type Ca2+ channels and α-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an α-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion. Glucagon is a critical regulator of glucose homeostasis. Its major action is to mobilize glucose from the liver. Glucagon secretion from α cells of the pancreatic islets of Langerhans is suppressed by elevated blood sugar, a response that is often perturbed in diabetes. Much work has focused on the regulation of α-cell glucagon secretion by neuronal factors and by paracrine factors from neighbouring cells, including the important islet hormone insulin. In contrast, we provide evidence in support of a direct effect of glucose on α cells within intact rodent and human islets. Notably, our work implicates an α-cell glucose-sensing pathway similar to that found in insulin-secreting β cells, involving closure of ATP-dependent K+ channels in the presence of glucose. Furthermore, we find that membrane depolarisation results in inhibition of Na+ and Ca2+ channel activity and α-cell exocytosis. Thus, we propose that elevated blood glucose reduces α-cell electrical activity and glucagon secretion by inactivating the ion channels involved in action potential firing and secretion.

This publication has 56 references indexed in Scilit: