Effects of Zeolite on Soil Nutrients and Growth of Barley Following Irrigation with Saline Water

Abstract
Soil salinity is a major abiotic factor limiting crop production but an amendment with synthetic zeolite may mitigate effects of salinity stress on plants. The objective of the study was to determine the effects of zeolite on soil properties and growth of barley irrigated with diluted seawater. Barley was raised on a sand dune soil treated with calcium type zeolite at the rate of 1 and 5% and irrigated every alternate day with seawater diluted to electrical conductivity (EC) levels of 3 and 16 dS m−1. Irrigation with 16 dS m−1 saline water significantly suppressed plant height by 25%, leaf area by 44% and dry weight by 60%. However, a substantial increase in plant biomass of salt stressed barley was observed in zeolite-amended treatments. The application of zeolite also enhanced water and salt holding capacity of soil. Post-harvest soil analysis showed high concentrations of calcium (Ca2 +), magnesium (Mg2 +), sodium (Na+), and potassium (K+) due to saline water especially in the upper soil layer but concentrations were lower in soils treated with zeolite. Zeolite application at 5% increased Ca2 + concentration in salt stressed plants; concentrations of trace elements were also increased by 19% for iron (Fe2 +) and 10% for manganese (Mn2 +). The overall results indicated that soil amendment with zeolite could effectively ameliorate salinity stress and improve nutrient balance in a sandy soil.