Evolutionary Screening of Biomimetic Coatings for Selective Detection of Explosives

Abstract
Susceptibility of chemical sensors to false positive signals remains a common drawback due to insufficient sensor coating selectivity. By mimicking biology, we have demonstrated the use of sequence-specific biopolymers to generate highly selective receptors for trinitrotoluene and 2,4-dinitrotoluene. Using mutational analysis, we show that the identified binding peptides recognize the target substrate through multivalent binding with key side chain amino acid elements. Additionally, our peptide-based receptors embedded in a hydrogel show selective binding to target molecules in the gas phase. These experiments demonstrate the technique of receptor screening in liquid to be translated to selective gas-phase target binding, potentially impacting the design of a new class of sensor coatings.

This publication has 39 references indexed in Scilit: