Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire FETs

Abstract
We fabricated and characterized new ambipolar silicon nanowire (SiNW) FET transistors featuring two independent gate-all-around electrodes and vertically stacked SiNW channels. One gate electrode enables dynamic configuration of the device polarity (n or p-type), while the other switches on/off the device. Measurement results on silicon show I on /I off > 10 6 and S ≈ 64mV/dec (70mV/dec) for p(n)-type operation in the same device. We show that XOR operation is embedded in the device characteristic, and we demonstrate for the first time a fully functional 2-transistor XOR gate.