Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics

Abstract
We demonstrate a through-etched grating coupler based on subwavelength nanostructure. The grating consists of arrays of 80 nm × 343 nm rectangular air holes, which can be patterned in a single lithography/etch. A peak coupling efficiency of 59% at 1551.6 nm and a 3 dB bandwidth of 60 nm are achieved utilizing the silicon-on-insulator platform with a 1 μm thick buried-oxide layer for transverse electric mode. The performance is comparable to gratings requiring much more complicated fabrication processes.