Impacts of Ionospheric Irregularities on L-Band Geosynchronous Synthetic Aperture Radar

Abstract
An L-band geosynchronous synthetic aperture radar (GEO SAR) system has to be confronted by an intractable issue of the decorrelations imposed by ionospheric irregularities. On the one hand, the phase and amplitude scintillations will bring about the decorrelation within the synthetic aperture and result in azimuth-imaging degradation. On the other hand, the imposed scintillation history is spatially decorrelated across the ultra-large GEO SAR scene. In this article, a signal model of the GEO SAR acquisitionis established with the two-way ionospheric transfer function (ITF) modulation to incorporate these two types of decorrelations. This model meanwhile takes the anisotropic and flowing irregularities into account. By using this model, the L-band GEO SAR azimuth-imaging is evaluated in terms of five indexes, whose performances are dependent on nine ionospheric parameters. Furthermore, the spatial correlation of the phase and intensity scintillation histories is investigated for the L-band GEO SAR scene, both in simulation and statistics. The statistical result implies a sized scene, in which the phase scintillation history tends to be consistent. Finally, the interferometric performance is investigated between the pure and contaminated GEO SAR images. The simulation result shows that the degradation of the interferometric coherence results from the in-aperture decorrelation.
Funding Information
  • National Natural Science Foundation of China (61501477, 61171123)
  • International Science and Technology Cooperation Program (ISTCP) of China (2015DFA10270)