Protective Effect of Curcumin in Rat Liver Injury Induced by Carbon Tetrachloride

Abstract
This study was carried out to investigate the protective effects of curcumin on acute or subacute carbon tetrachloride-induced liver damage in rats. Acute hepatotoxicity was induced by intraperitoneal injection of carbon tetrachloride after 4 consecutive days of curcumin treatment. Subacute hepatotoxicity was induced by oral administration of carbon tetrachloride twice a week during 4 weeks of curcumin treatment. In rats with acute liver injury, curcumin (100 and 200 mg kg−1) lowered the activity of serum alanine aminotransferase to 52–53% (P < 0.05) and aspartate aminotransferase to about 62% (P < 0.05) those of control rats. In rats with subacute liver injury, curcumin (100 mg kg−1) lowered the activity of serum alanine aminotransferase to 34% (P < 0.01) and alkaline phosphatase to 53% (P < 0.05) of control rats. The liver hydroxyproline content in the curcumin (100 mg kg−1)-treated group was reduced to 48% of the carbon tetrachloride control group (P < 0.01). Malondialdehyde levels in curcumin (100 mg kg−1) treated rat liver was decreased to 67% of the control rat liver (P < 0.01) in subacute injury. It was concluded that curcumin improved both acute and subacute liver injury induced by carbon tetrachloride in rats.