DFT tests for group 8 transition metal carbonyl complexes

Abstract
The applicability of several popular density functionals in predicting the geometrical parameters and energetics of transition metal carbonyl complexes of iron, ruthenium and osmium has been studied. The methods tested include pure GGA functionals (BLYP, BP86, OPBE, HCTH, PBE, VSXC) and hybrid GGA functionals (B3PW91, B3LYP, PBE1PBE, MPW1K, B97-2, B1B95, PBE1KCIS). The effect of changing the metal basis set from Huzinaga’s all-electron basis to SDD scECP basis was also studied. The results show, that hybrid functionals are needed in order to describe the back-bonding ability of the carbonyl ligands as well as to deal with metal-metal bonds. The best general performance, when also the computational cost was considered, was obtained with hybrid functionals B3PW91 and PBE1PBE, which therefore provide an efficient tool for solving problems involving large or medium sized transition metal carbonyl compounds. Figure Optimized structure for one of the test molecules, the Ru3(CO)12 cluster, showing the staggered conformation of the carbonyl ligands

This publication has 31 references indexed in Scilit: