Abstract
A method for adaptively optimizing the signal-to-noise ratio of an array antenna is presented. Optimum element weights are derived for a prescribed environment and a given signal direction. The derivation is extended to the optimization of a "generalized" signal-to-noise ratio which permits specification of preferred weights for the normal quiescent environment. The relation of the adaptive array to sidelobe cancellation is shown, and a real-time adaptive implementation is discussed. For illustration, the performance of an adaptive linear array is presented for various jammer configurations.