A voltammetric sensor on the basis of bismuth nanoparticles prepared by the method of gas condensation

Abstract
A procedure is developed for the immobilization of bismuth nanoparticles prepared by the method of gas condensation on inert supports manufactured by the screen printing method using carbon-containing inks. The electrochemical behavior of the immobilized bismuth nanoparticles is investigated, and the conditions of their electrochemical activation are found. The composition of the modifying suspension “bismuth nanoparticles-liquid” is optimized. The elaborated thick-film carbon-containing electrode modified by bismuth nanoparticles is shown to be similar in its analytical parameters to the commercially available thick-film carbon-containing electrode premodified by calomel, and substantially exceeds carbon-containing electrodes with electrolytically deposited bismuth films in its properties. The limits of detection for heavy metals by stripping voltammetry are as follows (μg/L): 0.38 for Zn(II), 0.40 for Cd(II), and 0.55 for Pb(II) at the preconcentration time 180 s.