Pressure-Induced Amorphization and Negative Thermal Expansion in ZrW 2 O 8

Abstract
It has recently been shown that zirconium tungstate (ZrW 2 O 8 ) exhibits isotropic negative thermal expansion over its entire temperature range of stability. This rather unusual behavior makes this compound particularly suitable for testing model predictions of a connection between negative thermal expansion and pressure-induced amorphization. High-pressure x-ray diffraction and Raman scattering experiments showed that ZrW 2 O 8 becomes progressively amorphous from 1.5 to 3.5 gigapascals. The amorphous phase was retained after pressure release, but the original crystalline phase returned after annealing at 923 kelvin. The results indicate a general trend between negative thermal expansion and pressure-induced amorphization in highly flexible framework structures.