Monocyte Chemoattractant Protein-1 Enhances Gene Expression and Synthesis of Matrix Metalloproteinase-1 in Human Fibroblasts by an Autocrine IL-1α Loop

Abstract
Monocyte chemoattractant protein-1 (MCP-1), a member of the C-C chemokine superfamily, has recently been shown to be involved in the pathogenesis of tissue fibrosis. In vitro studies demonstrated that MCP-1 up-regulates type I collagen gene expression via endogenous production of TGF-β in rat lung fibroblasts. We here show that recombinant human MCP-1 affects gene expression of interstitial collagenase (matrix metalloproteinase-1 (MMP-1)) in primary human skin fibroblasts and a stable fibroblast cell line. MMP-1 mRNA was induced by MCP-1 (10 ng/ml) as early as 6 h and reached a maximal expression at 24 h. MCP-1 also caused an increase of MMP-2 mRNA expression in both types of fibroblasts at 48 h. Interestingly, tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA was also up-regulated by MCP-1, and TIMP-1 mRNA expression peaked at 48 h in both types of fibroblasts. Immunoblot analysis demonstrated increased levels of MMP-1 and TIMP-1 protein in the culture supernatants of primary fibroblasts stimulated with MCP-1. In addition, MCP-1 strongly induced IL-1α mRNA expression in dermal fibroblasts in parallel with the induction of MMP-1. Preincubation with IL-1 receptor antagonist almost completely abrogated the expression of MMP-1 mRNA, and partially inhibited MMP-1 synthesis induced by MCP-1. Transient transfection of primary skin fibroblasts with a MMP-1 promoter-reporter construct indicated a dose-dependent increase in promoter activity by MCP-1 stimulation. These data demonstrate that MCP-1 up-regulates MMP-1 mRNA expression and synthesis in human skin fibroblasts at a transcriptional level and provide evidence that this is mediated by an IL-1α autocrine loop.