ALD Options for Si-integrated Ultrahigh-density Decoupling Capacitors in Pore and Trench Designs

Abstract
This paper reviews the options of using Atomic Layer Deposition (ALD) in passive and heterogeneous integration. The miniaturization intended by both integration schemes aim at Si- based integration for the former and at die stacking in a compact System-in-Package for the latter. In future Si-based integrated passives a next miniaturization step in trench capacitors requires the use of multiple 'classical' MOS layer stacks and the use of so-called high-k dielectrics (based on HfO2, etc.) and novel conductive layers like TiN, etc. to compose MIS and MIM stacks in 'trench' and 'pore' capacitors with capacitance densities exceeding 200 nF/mm2. One of the major challenges in realizing ultrahigh-density trench capacitors is to find an attractive pore lining and filling fabrication technology at reasonable cost and reaction rate as well as low temperature (for back-end processing freedom). As the deposition for the dielectric and conductive layers should be highly uniform, step-conformal and low- temperature ({less than or equal to} 400 {degree sign}C), ALD is an enabling technology here, by virtue of the self-limiting mechanism of this layer-by-layer deposition technique. This article discusses first a few examples of LPCVD deposition of conventional MOS layers with ONO-dielectrics and in situ doped polycrystalline silicon, both as single layers and multilayer stacks. In addition, a few options for ALD deposition of thin dielectric and conductive layers (e.g. HfO2- and TiN-based) will be discussed. The silicon substrates that were used contained high aspect ratio ({greater than or equal to} 20) features with cross-section and spacing of the order of 1 μm.